Parallel classes in Steiner triple systems
Steiner triple systems

A collection of 3-subsets (triples) of a \(v\)-set (of points) such that every pair of points appears together in exactly one triple.

Theorem (Kirkman 1847)

An STS(\(v\)) exists if and only if \(v \equiv 1 \text{ or } 3 \pmod{6}\).
Steiner triple systems

A collection of 3-subsets (triples) of a v-set (of points) such that every pair of points appears together in exactly one triple.
Steiner triple systems

A collection of 3-subsets (triples) of a v-set (of points) such that every pair of points appears together in exactly one triple.
Steiner triple systems

A collection of 3-subsets (triples) of a v-set (of points) such that every pair of points appears together in exactly one triple.
Steiner triple systems

A collection of 3-subsets (triples) of a v-set (of points) such that every pair of points appears together in exactly one triple.
Steiner triple systems

A collection of 3-subsets (triples) of a \(v \)-set (of points) such that every pair of points appears together in exactly one triple.
Steiner triple systems

A collection of 3-subsets (triples) of a v-set (of points) such that every pair of points appears together in exactly one triple.
Steiner triple systems

A collection of 3-subsets (*triples*) of a *v*-set (of *points*) such that every pair of points appears together in exactly one triple.
Steiner triple systems

A collection of 3-subsets (triples) of a υ-set (of points) such that every pair of points appears together in exactly one triple.
Steiner triple systems

A collection of 3-subsets (triples) of a v-set (of points) such that every pair of points appears together in exactly one triple.
Steiner triple systems

A collection of 3-subsets (triples) of a \(v \)-set (of points) such that every pair of points appears together in exactly one triple.

An STS(7)
Steiner triple systems

A collection of 3-subsets (triples) of a \(v \)-set (of points) such that every pair of points appears together in exactly one triple.

Theorem *(Kirkman 1847)*

An STS\((v)\) exists if and only if \(v \equiv 1 \) or 3 (mod 6).
Partial parallel classes
Partial parallel classes
Partial parallel classes

An STS(9)
Partial parallel classes

An STS(9)
Partial parallel classes

A PPC in the STS(9)
Parallel classes

An STS(9) A PC in the STS(9) STSs with orders 3 (mod 6) are candidates to have PCs.
Parallel classes

An STS(9)

A PC in the STS(9)

STSs with orders 3 (mod 6) are candidates to have PCs.
Parallel classes

An STS(9)

STSs with orders 3 (mod 6) are candidates to have PCs.
Parallel classes

An STS(9)

STSs with orders 3 (mod 6) are candidates to have PCs.
Parallel classes

A PC in the STS(9)
Parallel classes

A PC in the STS(9)

STSs with orders 3 (mod 6) are candidates to have PCs.
Almost parallel classes
Almost parallel classes

An STS(13)

An APC in the STS(13)

STSs with orders 1 (mod 6) are candidates to have APCs.
Almost parallel classes

An STS(13)

An APC in the STS(13)

STSs with orders 1 \text{ (mod 6)} \text{ are candidates to have APCs.}
Almost parallel classes

An APC in the STS(13)
Almost parallel classes

An APC in the STS(13)
Almost parallel classes

An APC in the STS(13)

STSs with orders 1 (mod 6) are candidates to have APCs.
Three questions

What can we say about:

1. when an STS has a PC/APC?

2. the size of the largest PPC in an STS?

3. the minimum number of PPCs into which an STS can be partitioned?
Question 1
Question 1

What can we say about when an STS has a PC/APC?
Small orders

The unique STS (7) has no APC.

The unique STS (9) has a PC.

Both STS (13)s have an APC.

All but 10 of the 80 STS (15)s have a PC.

All but 2 of the 11,084,874 STS (19)s have an APC.

– Colbourn et al.

All but 12 of the 1772 4-rotational STS (21)s have a PC.

– Mathon, Rosa

STSs without PCs/APCs seem rare.
Small orders

- The unique STS(7) has no APC.
Small orders

- The unique STS(7) has no APC.
- The unique STS(9) has a PC.
Small orders

- The unique STS(7) has no APC.
- The unique STS(9) has a PC.
- Both STS(13)s have an APC.
Small orders

- The unique STS(7) has no APC.
- The unique STS(9) has a PC.
- Both STS(13)s have an APC.
- All but 10 of the 80 STS(15)s have a PC.
Small orders

- The unique STS(7) has no APC.
- The unique STS(9) has a PC.
- Both STS(13)s have an APC.
- All but 10 of the 80 STS(15)s have a PC.
- All but 2 of the 11,084,874,829 STS(19)s have an APC.
 – Colbourn et al.
Small orders

- The unique STS(7) has no APC.
- The unique STS(9) has a PC.
- Both STS(13)s have an APC.
- All but 10 of the 80 STS(15)s have a PC.
- All but 2 of the 11,084,874,829 STS(19)s have an APC.
 – Colbourn et al.
- All but 12 of the 1772 4-rotational STS(21)s have a PC.
 – Mathon, Rosa
Small orders

- The unique STS(7) has no APC.
- The unique STS(9) has a PC.
- Both STS(13)s have an APC.
- All but 10 of the 80 STS(15)s have a PC.
- All but 2 of the 11,084,874,829 STS(19)s have an APC. – Colbourn et al.
- All but 12 of the 1772 4-rotational STS(21)s have a PC. – Mathon, Rosa

STSs without PCs/APCs seem rare.
Theorem (Lu, Ray-Chaudhuri, Wilson)
For all \(v \equiv 3 \pmod{6} \), there is an STS \((v)\) whose triples can be partitioned into \(v - 1 \) 2 PC\(s \). (Kirman triple systems)

Theorem (Vanstone, Stinson, Schellenberg)
For all \(v \equiv 1 \pmod{6} \), \(v \neq 7 \), there is an STS \((v)\) whose triples can be partitioned into \(v - 1 \) 2 APCs and one other PPC. (Hanani triple systems)

It seems the vast majority of STS contain a PC/APC.
Theorem (Lu, Ray-Chaudhuri, Wilson)
For all \(v \equiv 3 \pmod{6} \), there is an STS\((v)\) whose triples can be partitioned into \(\frac{v-1}{2} \) PCs. (*Kirman triple systems*)

It seems the vast majority of STS contain a PC/APC.
Theorem (Lu, Ray-Chaudhuri, Wilson)
For all \(v \equiv 3 \pmod{6} \), there is an STS\((v)\) whose triples can be partitioned into \(\frac{v-1}{2} \) PCs. (*Kirman triple systems*)

Theorem (Vanstone, Stinson, Schellenberg)
For all \(v \equiv 1 \pmod{6} \), \(v \neq 7 \), there an STS\((v)\) whose triples can be partitioned into \(\frac{v-1}{2} \) APCs and one other PPC. (*Hanani triple systems*)
STS with PC/APCs

Theorem (Lu, Ray-Chaudhuri, Wilson)
For all $v \equiv 3 \pmod{6}$, there is an STS(v) whose triples can be partitioned into $\frac{v-1}{2}$ PCs. (*Kirman triple systems*)

Theorem (Vanstone, Stinson, Schellenberg)
For all $v \equiv 1 \pmod{6}$, $v \neq 7$, there is an STS(v) whose triples can be partitioned into $\frac{v-1}{2}$ APCs and one other PPC. (*Hanani triple systems*)

It seems the vast majority of STS contain a PC/APC.
STS without PC/APCs

Conjecture (Rosa, Colbourn)
There is an APC free STS \((v)\) for all \(v \equiv 1 \pmod{6}\) except \(v = 13\).

Theorem (Wilson, 1992)
For each odd \(n\) there is an APC free STS \((2^{n} - 1)\).

Theorem (Bryant, Horsley, 2013)
There is an APC free STS \(\left(2 \left(3^n\right) + 1\right)\) for each \(n \geq 1\).

Conjecture (Mathon, Rosa)
There is a PC free STS \((v)\) for all \(v \equiv 3 \pmod{6}\) except \(v = 3, 9\).

Theorem (Bryant, Horsley, 2015)
There is a PC free STS \(\left(5p + 2\right)\) for each prime \(p \equiv 5 \pmod{24}\).
STS without PC/APCs

\[v \equiv 1 \pmod{6} \]
STS without PC/APCs

\(v \equiv 1 \pmod{6} \)

Conjecture (Rosa, Colbourn)

There is an APC free STS(\(v \)) for all \(v \equiv 1 \pmod{6} \) except \(v = 13 \).
STS without PC/APCs

\(v \equiv 1 \pmod{6} \)

Conjecture (Rosa, Colbourn)
There is an APC free STS\((v)\) for all \(v \equiv 1 \pmod{6} \) except \(v = 13 \).

Theorem (Wilson, 1992)
For each odd \(n \) there is an APC free STS\((2^n - 1)\).
STS without PC/APCs

\[v \equiv 1 \pmod{6} \]

Conjecture (Rosa, Colbourn)
There is an APC free STS(v) for all \(v \equiv 1 \pmod{6} \) except \(v = 13 \).

Theorem (Wilson, 1992)
For each odd \(n \) there is an APC free STS(\(2^n - 1 \)).

Theorem (Bryant, Horsley, 2013)
There is an APC free STS(\(2(3^n) + 1 \)) for each \(n \geq 1 \).
Conjecture (Rosa, Colbourn)
There is an APC free STS(v) for all \(v \equiv 1 \pmod{6} \) except \(v = 13 \).

Theorem (Wilson, 1992)
For each odd \(n \) there is an APC free STS\((2^n - 1)\).

Theorem (Bryant, Horsley, 2013)
There is an APC free STS\((2(3^n) + 1) \) for each \(n \geq 1 \).
STS without PC/APCs

\(\nu \equiv 1 \pmod{6} \)

Conjecture (Rosa, Colbourn)
There is an APC free \(\text{STS}(\nu) \) for all \(\nu \equiv 1 \pmod{6} \) except \(\nu = 13 \).

Theorem (Wilson, 1992)
For each odd \(n \) there is an APC free \(\text{STS}(2^n - 1) \).

Theorem (Bryant, Horsley, 2013)
There is an APC free \(\text{STS}(2(3^n) + 1) \) for each \(n \geq 1 \).

\(\nu \equiv 3 \pmod{6} \)

Conjecture (Mathon, Rosa)
There is a PC free \(\text{STS}(\nu) \) for all \(\nu \equiv 3 \pmod{6} \) except \(\nu = 3, 9 \).
STS without PC/APCs

\(\nu \equiv 1 \pmod{6} \)

Conjecture (Rosa, Colbourn)
There is an APC free STS(\(\nu\)) for all \(\nu \equiv 1 \pmod{6}\) except \(\nu = 13\).

Theorem (Wilson, 1992)
For each odd \(n\) there is an APC free STS(\(2^n - 1\)).

Theorem (Bryant, Horsley, 2013)
There is an APC free STS(\(2(3^n) + 1\)) for each \(n \geq 1\).

\(\nu \equiv 3 \pmod{6} \)

Conjecture (Mathon, Rosa)
There is a PC free STS(\(\nu\)) for all \(\nu \equiv 3 \pmod{6}\) except \(\nu = 3, 9\).

Theorem (Bryant, Horsley, 2015)
There is a PC free STS(\(5p + 2\)) for each prime \(p \equiv 5 \pmod{24}\).
STS without PC/APCs

\(v \equiv 1 \pmod{6} \)

Conjecture (Rosa, Colbourn)
There is an APC free STS\((v)\) for all \(v \equiv 1 \pmod{6}\) except \(v = 13\).

Theorem (Wilson, 1992)
For each odd \(n\) there is an APC free STS\((2^n - 1)\).

Theorem (Bryant, Horsley, 2013)
There is an APC free STS\((2(3^n) + 1)\) for each \(n \geq 1\).

\(v \equiv 3 \pmod{6} \)

Conjecture (Mathon, Rosa)
There is a PC free STS\((v)\) for all \(v \equiv 3 \pmod{6}\) except \(v = 3, 9\).

Theorem (Bryant, Horsley, 2015)
There is a PC free STS\((5p + 2)\) for each prime \(p \equiv 5 \pmod{24}\).
Question 2
What can we say about the size of the largest PPC in an STS?
Theorem (Alon, Kim, Spencer, 1995)

Any STS \((v)\) contains a PPC covering all points but at most \(O\left(\frac{v}{2} \ln \frac{3}{2} v\right)\).

No example is known of an STS \((v)\) whose largest PPC covers fewer than \(v - 4\) points.
Theorem (Alon, Kim, Spencer, 1995)

Any STS\((v) \) contains a PPC covering all points but at most \(O(v^{1/2} \ln^{3/2} v) \).
Theorem (Alon, Kim, Spencer, 1995)
Any STS(v) contains a PPC covering all points but at most $O(v^{1/2} \ln^{3/2} v)$.

No example is known of an STS(v) whose largest PPC covers fewer than $v - 4$ points.
Question 3

What can we say about the minimum number of PPCs into which an STS can be partitioned? This number is called the chromatic index of the system.
Question 3

What can we say about the minimum number of PPCs into which an STS can be partitioned?

This number is called the chromatic index of the system.
Question 3

What can we say about the minimum number of PPCs into which an STS can be partitioned?

This number is called the *chromatic index* of the system.
Bounds on chromatic indices

The chromatic index of any STS \((v)\) is at least

\[
m(v) = \begin{cases}
 v - 1, & \text{if } v \equiv 3 \pmod{6} \\
 v + 1, & \text{if } v \equiv 1 \pmod{6}
\end{cases}
\]

Conjecture (Rosa) Every STS \((v)\) has chromatic index in \([m(v), m(v) + 1, m(v) + 2]\).

Result (Colbourn, Colbourn, 1982) Any STS \((v)\) has chromatic index at most \(3v - 3\).

Theorem (Pippenger, Spencer, 1989) The maximum chromatic index over the STS \((v)\) approaches \(v^2\) as \(v \to \infty\).
Bounds on chromatic indices

The chromatic index of any STS(v) is at least

$$m(v) = \begin{cases} \frac{v-1}{2}, & \text{if } v \equiv 3 \pmod{6} \\ \frac{v+1}{2}, & \text{if } v \equiv 1 \pmod{6} \end{cases}$$
Bounds on chromatic indices

The chromatic index of any STS(v) is at least

$$m(v) = \begin{cases}
\frac{v-1}{2}, & \text{if } v \equiv 3 \pmod{6} \\
\frac{v+1}{2}, & \text{if } v \equiv 1 \pmod{6}
\end{cases}$$

Conjecture (Rosa)
Every STS(v) has chromatic index in \{\(m(v), m(v) + 1, m(v) + 2\}\).
Bounds on chromatic indices

The chromatic index of any $\text{STS}(v)$ is at least

$$m(v) = \begin{cases} \frac{v-1}{2}, & \text{if } v \equiv 3 \pmod{6} \\ \frac{v+1}{2}, & \text{if } v \equiv 1 \pmod{6} \end{cases}$$

Conjecture (Rosa)
Every $\text{STS}(v)$ has chromatic index in $\{m(v), m(v) + 1, m(v) + 2\}$.

Result (Colbourn, Colbourn, 1982)
Any $\text{STS}(v)$ has chromatic index at most $\frac{3v-3}{2}$.
Bounds on chromatic indices

The chromatic index of any \(\text{STS}(v)\) is at least

\[
m(v) = \begin{cases}
\frac{v-1}{2}, & \text{if } v \equiv 3 \pmod{6} \\
\frac{v+1}{2}, & \text{if } v \equiv 1 \pmod{6}
\end{cases}
\]

Conjecture (Rosa)
Every \(\text{STS}(v)\) has chromatic index in \(\{m(v), m(v) + 1, m(v) + 2\}\).

Result (Colbourn, Colbourn, 1982)
Any \(\text{STS}(v)\) has chromatic index at most \(\frac{3v-3}{2}\).

Theorem (Pippenger, Spencer, 1989)
The maximum chromatic index over the \(\text{STS}(v)\)s approaches \(\frac{v}{2}\) as \(v \to \infty\).
Bounds on chromatic indices

The chromatic index of any STS(v) is at least

$$m(v) = \begin{cases}
\frac{v-1}{2}, & \text{if } v \equiv 3 \pmod{6} \\
\frac{v+1}{2}, & \text{if } v \equiv 1 \pmod{6}
\end{cases}$$

Conjecture (Rosa)
Every STS(v) has chromatic index in \{m(v), m(v) + 1, m(v) + 2\}.

Result (Colbourn, Colbourn, 1982)
Any STS(v) has chromatic index at most $\frac{3v-3}{2}$.

Theorem (Pippenger, Spencer, 1989)
The maximum chromatic index over the STS(v)s approaches $\frac{v}{2}$ as $v \to \infty$.
Systems with low/high chromatic indices

Conjecture (Rosa)
Every STS \((v)\) has chromatic index in \(\{m(v), m(v) + 1, m(v) + 2\}\).

Kirkman and Hanani triple systems supply examples of STS \((v)\)s with chromatic index \(m(v)\) for all \(v \neq 1, 7\).

PC/APC free STS necessarily have chromatic index at least \(m(v) + 2\).

Theorem (Bryant, Colbourn, Horsley, Wanless)
For all \(v \equiv 3\) (mod 6) there is a STS \((v)\) with chromatic index at least \(m(v) + 2\) except when \(v \in \{3, 9\}\) and possibly when \(v \in \{45, 75, 129, 513\}\).

Theorem (Baker, Meszka)
For \(n \geq 3\), the chromatic index of a projective STS \((2^n - 1)\) is \(m(2^n - 1) + 2\) if \(n\) is odd and is \(m(2^n - 1)\) if \(n\) is even.
Systems with low/high chromatic indices

Conjecture (Rosa)
Every STS(ν) has chromatic index in \{m(ν), m(ν) + 1, m(ν) + 2\}.
Systems with low/high chromatic indices

Conjecture (Rosa)
Every STS(ν) has chromatic index in $\{m(\nu), m(\nu) + 1, m(\nu) + 2\}$.

Kirkman and Hanani triple systems supply examples of STS(ν)s with chromatic index $m(\nu)$ for all $\nu \neq 1, 7$.
Systems with low/high chromatic indices

Conjecture (Rosa)
Every STS\((v)\) has chromatic index in \(\{m(v), m(v) + 1, m(v) + 2\}\).

Kirkman and Hanani triple systems supply examples of STS\((v)\)s with chromatic index \(m(v)\) for all \(v \neq 1, 7\).

PC/APC free STS necessarily have chromatic index at least \(m(v) + 2\).
Systems with low/high chromatic indices

Conjecture (Rosa)
Every STS(v) has chromatic index in \(\{m(v), m(v) + 1, m(v) + 2\} \).

Kirkman and Hanani triple systems supply examples of STS(v)s with chromatic index $m(v)$ for all $v \neq 1, 7$.

PC/APC free STS necessarily have chromatic index at least $m(v) + 2$.

Theorem (Bryant, Colbourn, Horsley, Wanless)
For all $v \equiv 3 \pmod{6}$ there is a STS(v) with chromatic index at least $m(v) + 2$ except when $v \in \{3, 9\}$ and possibly when $v \in \{45, 75, 129, 513\}$.

Theorem (Baker, Meszka)
For $n \geq 3$, the chromatic index of a projective STS($2^n - 1$) is $m(2^n - 1)$ if n is odd and is $m(2^n - 1) + 2$ if n is even.
Systems with low/high chromatic indices

Conjecture (Rosa)
Every STS(v) has chromatic index in \(\{m(v), m(v) + 1, m(v) + 2\} \).

Kirkman and Hanani triple systems supply examples of STS(v)s with chromatic index $m(v)$ for all $v \neq 1, 7$.

PC/APC free STS necessarily have chromatic index at least $m(v) + 2$.

Theorem (Bryant, Colbourn, Horsley, Wanless)
For all $v \equiv 3 \pmod{6}$ there is a STS(v) with chromatic index at least $m(v) + 2$ except when $v \in \{3, 9\}$ and possibly when $v \in \{45, 75, 129, 513\}$.

Theorem (Baker, Meszka)
For $n \geq 3$, the chromatic index of a projective STS($2^n - 1$) is $m(2^n - 1) + 2$ if n is odd and is $m(2^n - 1)$ if n is even.
Thanks.
Thanks.