Finite geometry

John Bamberg

27th September 2016
Geometry

Analytic Geometry

- Descartes (1596-1650), Fermat (1601-1665)
- Equations to describe curves

Transformation Geometry / Symmetry

- Klein (1849-1925), Erlanger Programm, Cayley (1825-1895)
- Study of geometries via their symmetries

Synthetic Geometry

- Since antiquity
- Spatial intuition is used to “construct” geometrical objects

Synthetic geometry is that which studies figures as such, without recourse to formulas, whereas analytic geometry consistently makes use of such formulas as can be written down after the adoption of an appropriate system of coordinates.

– Felix Klein
Example: Elliptic quadrics of 3-dim. projective spaces

Analytic
Zeros of a quadratic in four variables: \(x_0x_1 + x_2^2 + x_2x_3 + \eta x_3^2 = 0 \)

Symmetric
Orbit of \(P\Omega^{-}(4, q) \) on totally singular 1-spaces.

Synthetic
\(q^2 + 1 \) points of projective space, no three collinear.
Definition (Order)
Let \mathbb{P} be a finite projective plane. Then $\exists n \in \mathbb{N}$ such that there are exactly $n + 1$ points on any line and $n + 1$ lines through any point.

The Prime Power Conjecture
n is a prime power.

- Bruck-Ryser (1949): $n \equiv 1, 2 \pmod{4} \Rightarrow n = x^2 + y^2$
- $\Rightarrow n \not\equiv 6 \pmod{8}$
- Bose (1938): $n \neq 6$.
Prime order projective planes

n prime \Rightarrow Desarguesian;
i.e., arises from the lattice of subspaces of \mathbb{F}_p^3.
Let \(\Pi \) be a finite projective plane.

Theorem (Ostrom & Wagner 1959)
\[
\text{Aut}(\Pi) \text{ doubly-transitive on points} \Rightarrow \Pi \text{ is Desarguesian.}
\]

Conjecture (D. Hughes 1959)
\[
\text{Aut}(\Pi) \text{ transitive on points} \Rightarrow \Pi \text{ is Desarguesian.}
\]

Theorem (Gill 2016)
\[
G \leq \text{Aut}(\Pi), \ G \text{ transitive on points, } \Pi \text{ non-Desarguesian.}
G \text{ insoluble} \Rightarrow G/O(G) \text{ is isomorphic to SL}(2,5) \text{ or SL}(2,5).2.
\]
Ovoids of 3-dimensional projective space

Two known families of examples

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>((s, t, s^2 + st + \eta t^2, 1), s, t \in \mathbb{F}_q, (0, 0, 1, 0))</td>
<td>(2D_2(q))</td>
</tr>
<tr>
<td>((s, t, s^{\sigma+2} + st + t^\sigma, 1), s, t \in \mathbb{F}_{2^{2e+1}}, (0, 0, 1, 0))</td>
<td>(2B_2(q))</td>
</tr>
</tbody>
</table>

- \(q\) odd \(\Rightarrow\) elliptic quadric (Barlotti, Panella 1955),
- Classified for \(q \leq 32\) (O’Keefe, Penttila & Royle 1994).

Classification of ovoids

Are the only ovoids the elliptic quadrics and Suzuki-Tits ovoids?
Generalised polygons

Tits (1959): a model for rank 2 simple groups of Lie type.

What are they?

- Rank 2 irreducible spherical buildings.
- Points-line geometries whose incidence graph has $\text{girth} = 2 \cdot \text{diameter}.$
- A generalised 3-gon is a projective plane.

Theorem (Feit-Higman Theorem (1964))

A nontrivial generalised n-gon has $n \in \{3, 4, 6, 8\}.$
Known examples (up to duality)

8. One family related to the groups $^2F_4(q)$.
6. Two families related to $^3D_4(q)$ and $G_2(q)$.
4. Many examples, but not too many! Includes geometries for the groups $^2A_3(q)/^2D_2(q)$, $^2A_4(q)$, $B_2(q)/C_2(q)$
3. Heaps!

Order (s, t)

- every line has $s + 1$ points,
- every point lies on $t + 1$ lines.
Parameters of generalised polygons

Possible

③ \(s = t \)

④ \(\sqrt{t} \leq s \leq t^2 \) (Higman Inequality)

⑥ \(st \in \square \) and \(3\sqrt{t} \leq s \leq t^3 \) (Haemers-Roos Inequality)

⑧ \(2st \in \square \) and \(\sqrt{t} \leq s \leq t^2 \) (Higman Inequality)

Known (up to duality)

④ \((q, q), (q, q^2), (q^2, q^3), (q - 1, q + 1) \)

⑥ \((q, q), (q, q^2) \)

⑧ \((q, q^2) \)
A **unital** of a projective plane of order q^2 is a set of $q^3 + 1$ points \mathcal{U} such that every line meets \mathcal{U} in 1 or $q + 1$ points.

Buekenhout-Metz Conjecture

Every unital of the Desarguesian projective plane arises from the construction of Buekenhout and Metz.

- Been around since 1979.
- True for $q \in \{4, 9, 16\}$.
- A counter-example has a smallish group.
A k-blocking set of a proj. space $\mathbb{P}V$ is a set of points B such that every k-codimensional space meets B.

Small Blocking Sets Conjecture

A minimal k-blocking set in \mathbb{PF}^n_q of size less than $3(q^k + 1)/2$ is a linear set.

- Formulated in 2008, but can be traced to earlier origins.
- True for $q = p^3$ (Lavrauw, Storme, Van de Voorde 2011)
A maximal arc of a projective plane is a set of points A such that every line meets A in 0 or m points.

Maximal Arcs Conjecture
Maximal arcs exist only in projective planes of even order.

- Been around since 1975 (J. A. Thas).
- True for Desarguesian planes (Ball, Blokhuis, Mazzocca 1997).
A k-arc of $\mathbb{P}F_q^n$ is a set of k points, no n lying in a hyperplane.

Example
Normal rational curve (classical):

$$\{(1, t, t^2, t^3, \ldots, t^{n-1}): t \in F_q\} \cup \{(0, 0, \ldots, 0, 1)\}.$$

(q + 1)-arcs
Does there exist a non-classical $(q + 1)$–arc of $\mathbb{P}F_q^n$, $n \leq q$, q odd, that is not the Glynn 10-arc of $\mathbb{P}F_9^5$?