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Introduction

There are many ways of building a graph from a group. For
each of these, there are various natural questions, for example,

I To what extent does the graph determine the group?
I How do group-theoretic properties translate into

graph-theoretic properties or vice versa?
I For which groups does the graph have some specified

property?
I will be mainly concerned with the power graph, but I also
discuss some variants of the power graph, the commuting
graph, and the generation graph.
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Definitions

Let G be a group. In each of the following graphs, we take the
vertex set of the graph to be the set G.

I In the commuting graph, x and y are joined if xy = yx.
I In the power graph, x and y are joined if one is a power of

the other.
I In the directed power graph, there is an arc from x to y if y

is a power of x.
I In the enhanced power graph, x and y are joined if there is

an element z such that x and y are both powers of z.
I In the generation graph, x and y are joined if 〈x, y〉 = G.

The definition of power graph is due to Kelarev and Quinn,
while the enhanced power graph appears in my preprint with
Aalipour, Akbari, Nikandish and Shaveisi (AACNS).
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Some properties
I The directed power graph is an orientation of the power

graph (adding double edges between certain pairs of
vertices if necessary).

I For the commuting and power graphs, if H is a subgroup
of G, then the induced subgraph on H is the corresponding
graph associated with H.

I This is slightly less obvious for the enhanced power graph,
but can be seen by observing that x and y are joined in the
enhanced power graph if and only if 〈x, y〉 is cyclic.

I However, passing to a subgroup completely changes the
generation graph: a proper subgroup of G is an
independent set in the generation graph, even if it is a
2-generated group.

I The power graph is a (spanning) subgraph of the enhanced
power graph, which is itself a subgraph of the commuting
graph; and, in a non-abelian group, the generation graph is
a subgraph of the complement of the commuting graph.
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Notation

From now on, I am mostly concerned with the power graph
and its variants. We denote the power graph, directed power
graph, and enhanced power graph by P(G),~P(G) and Pe(G),
and the commuting graph by Γ(G).



Determining the group

Non-isomorphic groups can have isomorphic power graphs.
For finite groups, note that, if G is a group of exponent 3, then
its power graph consists of a number of triangles sharing a
common vertex; in the directed power graph, edges on the
common vertex are directed towards it, while other edges are
bidirectional. (Note that there do exist non-abelian groups of
exponent 3.)

In the infinite case, things are even worse. For a prime p, let Cp∞

be the group of all p-power roots of unity; alternatively it is the
quotient of the additive group of rationals with p-power
denominators by the subgroup of integers. Now clearly P(Cp∞)
is a countable complete graph; we cannot even determine the
prime!
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Determining the directions

Again in the finite case, the power graph does not uniquely
determine the directed power graph. Let G = C6 = 〈a〉. Then
the power graph consists of the complete graph K6 with the
two edges {a2, a3} and {a4, a3} deleted. We cannot distinguish
between the identity and the two generators a and a5 of the
group.

Theorem
Let G be a finite group. Then P(G) determines~P(G) up to
isomorphism.

Corollary

Let G be a finite group. Then P(G) determines Pe(G) up to
isomorphism.
For x and y are joined in Pe(G) if and only if there is a vertex z
which dominates both in~P(G).
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For infinite groups

Question
Extend these results to some classes of infinite groups.

In July, two undergraduates at St Andrews, Horacio Guerra
and Šimon Jurina, showed that, for torsion-free abelian groups,
the power graph determines the directed power graph up to
isomorphism. They also made substantial progress on the
problem of deciding when two such groups have isomorphic
power graphs.
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Comparison

We have seen that the power graph is a subgraph of the
enhanced power graph, which is itself a subgraph of the
commuting graph. In AACNS, the following results appear.

Theorem
A finite group G has power graph equal to enhanced power graph if
and only if every cyclic subgroup has prime power order. A group
with this property is a p-group, a Frobenius group with kernel a
p-group and complement a q-group, a 2-Frobenius group with normal
subgroups F1 and F2 such that F1 and G/F2 are p-groups and F2/F1
a q-group, or a group with a normal 2-subgroup with quotient group
H, with S ≤ H ≤ Aut(S) and S ∼= A5 or A6.



Comparison

We have seen that the power graph is a subgraph of the
enhanced power graph, which is itself a subgraph of the
commuting graph. In AACNS, the following results appear.

Theorem
A finite group G has power graph equal to enhanced power graph if
and only if every cyclic subgroup has prime power order. A group
with this property is a p-group, a Frobenius group with kernel a
p-group and complement a q-group, a 2-Frobenius group with normal
subgroups F1 and F2 such that F1 and G/F2 are p-groups and F2/F1
a q-group, or a group with a normal 2-subgroup with quotient group
H, with S ≤ H ≤ Aut(S) and S ∼= A5 or A6.



Theorem
A finite group has enhanced power graph equal to commuting graph
if and only if its Sylow subgroups are cyclic or generalized
quaternion. A group G with this property satisfies O(G) metacyclic,
H = G/O(G) is a group with a unique involution z, and H/〈z〉 a
cyclic or dihedral 2-group, a subgroup of PΓL(2, q) containing
PSL(2, q) for q an odd prime power, or A7.



Corollary

A finite group G with power graph equal to commuting graph is one
of the following: a cyclic p-group; a semidirect product of Cpa by Cqb ,
where p and q are primes, a, b > 0, and Cqb acts faithfully on Cpa ; or a
generalized quaternion group.

The corollary was also extended to infinite soluble groups. No
extension to arbitrary infinite groups seems likely, since for
example any Tarski monster (an infinite group all of whose
non-trivial proper subgroups are cyclic of a fixed prime order)
satisfies the conditions.

Question
Can we extend the results of the first two theorems to infinite soluble
groups?

Question
What about graph-theoretic properties of the graphs Γ(G) \ P(G),
Pe(G) \ P(G), Γ(G) \ Pe(G)? In particular, when is one of these
graphs connected (possibly after removing the identity)?
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. . . and the generation graph

For 2-generator non-abelian groups, as we saw, the generation
graph is contained in the complement of the commuting graph.

Question
For which 2-generator non-abelian groups is the generation graph
equal to the complement of the commuting graph?
Such a group is generated by any pair of elements which don’t
commute. So every proper subgroup is abelian. Conversely, a
non-abelian group with every proper subgroup abelian is
generated by any two non-commuting elements, so the
generation graph is the complement of the commuting graph.
The finite groups with this property have been known since
1903 (Miller and Moreno). In the infinite case, the existence of
Tarski monsters show things are more complicated!
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Question
If G is 2-generator non-abelian but not a Miller–Moreno group, what
can be said about the complement of the union of the commuting and
generation graphs?

It is now an easy exercise to answer the following:

Question
For which is a 2-generator non-abelian finite group is the complement
of the generation graph equal to

I the enhanced power graph,
I the power graph?
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Other issues

The first part of the following result is due to Shitov. A graph is
perfect if every induced subgraph has clique number equal to
chromatic number.

Theorem
The chromatic number of P(G) is at most countable. It is finite if and
only if G has bounded exponent; in this case, P(G) is perfect.

Theorem
A maximal clique in the enhanced power graph of a group is a
subgroup, and is either cyclic or locally cyclic.
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Some questions

The following open problems are taken from AACNS.

Question
For an infinite group G, is it true that the independence number of
P(G) is finite if and only if G ∼= Cp∞ ×H, where p is prime and H a
finite group?
This is true for nilpotent groups.

Question
For which groups G are the induced subgraphs of the enhanced power
graph and the commuting graph on G \ {1} equal?
Note that free groups have this property.
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Removing dominating vertices

Question
Which groups have the property that the power graph is connected
when the set of vertices dominating the graph is removed?
In the case of the commuting graph, the dominating vertices
are those in the centre, which are traditionally removed to
investigate connectedness, as in recent results by Giudici,
Morgan, Parker and others.

Let P−(G) be the graph obtained by removing dominating
vertices from P(G).

Proposition

Let G be a cyclic group of order n. Then
I if n is a prime power, then P(G) is a complete graph, and

G \D(G) = ∅.
I if n is not a prime power, then P−(G) is connected if and only if

n is not the product of two primes.
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I if n is not a prime power, then P−(G) is connected if and only if
n is not the product of two primes.
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Automorphism groups

The generation graphs of groups have huge automorphism
groups. For example, Aut(Γ(A5)) has order 23482733690880.

The reason is rather boring. If one generator has order 5, you
can replace it by any non-identity power and generate the same
group. Similarly for order 3. There are 6 subgroups of order 5
and 10 of order 3. So there is a normal subgroup of order
(4!)6(2!)10 fixing these classes. The quotient by this normal
subgroup is S5, which is the automorphism group of A5.
In a paper with Andrea Lucchini and Colva Roney-Dougal
which just went on the arXiv, we conjecture that this holds
more generally.
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A conjecture

Let G be a 2-generator group. Define an equivalence relation on
G, where g ≡ h if g and h have the same neighbours in the
generation graph. Let Γ(G) be the vertex-weighted graph
whose vertices are the equivalence classes, the weight being the
size of the class, and adjacency as in Γ(G).

Question
Is it true that, if G is a group in which every non-identity element lies
in some 2-element generating set, we have

Aut(Γ(G)) = Aut(G)?



Question
What can be said about the automorphism group of the power graph,
directed power graph, enhanced power graph, or commuting graph of
a group G?

Note that these groups always contain the automorphism
group of G: the main question is, how much bigger are they?
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