Relations between partitions: some problems

R. A. Bailey
University of St Andrews / QMUL (emerita)

University of Western Australia, September 2016
An example of three uniform partitions of the same set

The underlying set has size 36 (vegetable patches).

- The partition $D$ into districts has 4 parts of size 9.
- The partition $G$ into gardens has 12 parts of size 3.
- The partition $L$ into letters (lettuce varieties) has 9 parts of size 4.

Three binary relations:

- $G \preceq D$, $G$ is a refinement of $D$;
- $L \perp D$, $L$ is strictly orthogonal to $D$;
- $L \triangle L$, $L$ is balanced with respect to $G$.
An example of three uniform partitions of the same set

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>E</td>
<td>H</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>I</td>
<td>D</td>
<td>H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>H</td>
<td>I</td>
<td>G</td>
</tr>
</tbody>
</table>

- The underlying set has size 36 (vegetable patches).
An example of three uniform partitions of the same set

- The underlying set has size 36 (vegetable patches).
- The partition $D$ into districts has 4 parts of size 9.
An example of three uniform partitions of the same set

The underlying set has size 36 (vegetable patches).

- The partition $D$ into districts has 4 parts of size 9.
- The partition $G$ into gardens has 12 parts of size 3.
An example of three uniform partitions of the same set

- The underlying set has size 36 (vegetable patches).
- The partition $D$ into districts has 4 parts of size 9.
- The partition $G$ into gardens has 12 parts of size 3.
- The partition $L$ into letters (lettuce varieties) has 9 parts of size 4.
An example of three uniform partitions of the same set

- The underlying set has size 36 (vegetable patches).
- The partition $D$ into districts has 4 parts of size 9.
- The partition $G$ into gardens has 12 parts of size 3.
- The partition $L$ into letters (lettuce varieties) has 9 parts of size 4.
An example of three uniform partitions of the same set

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th>G</th>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>E</td>
<td>H</td>
<td>I</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td></td>
<td>E</td>
<td>F</td>
<td></td>
<td>I</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>I</td>
<td></td>
<td>G</td>
<td>H</td>
<td>I</td>
<td></td>
<td>I</td>
<td>G</td>
<td></td>
<td>H</td>
<td>I</td>
<td>G</td>
<td>H</td>
</tr>
</tbody>
</table>

- The underlying set has size 36 (vegetable patches).
- The partition $D$ into districts has 4 parts of size 9.
- The partition $G$ into gardens has 12 parts of size 3.
- The partition $L$ into letters (lettuce varieties) has 9 parts of size 4.

Three binary relations:

- $G \prec D$, $G$ is a refinement of $D$;
An example of three uniform partitions of the same set

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>E</td>
<td>H</td>
<td>I</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>D</td>
<td>H</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

- The underlying set has size 36 (vegetable patches).
- The partition $D$ into districts has 4 parts of size 9.
- The partition $G$ into gardens has 12 parts of size 3.
- The partition $L$ into letters (lettuce varieties) has 9 parts of size 4.

Three binary relations:
- $G \prec D$, $G$ is a refinement of $D$;
- $L \perp D$, $L$ is strictly orthogonal to $D$;
An example of three uniform partitions of the same set

- The underlying set has size 36 (vegetable patches).
- The partition $D$ into districts has 4 parts of size 9.
- The partition $G$ into gardens has 12 parts of size 3.
- The partition $L$ into letters (lettuce varieties) has 9 parts of size 4.

Three binary relations:
- $G \prec D$, $G$ is a refinement of $D$;
- $L \perp D$, $L$ is strictly orthogonal to $D$;
- $L \triangleright G$, $L$ is balanced with respect to $G$. 
Some definitions for a uniform partition of a finite set

Ω is the underlying set, of size M.

$V_0 = \text{subspace of } \mathbb{R}^\Omega \text{ consisting of constant vectors}.$

For a given uniform partition $F$:

- $n_F = \text{number of parts of } F;$
Ω is the underlying set, of size $M$.
$V_0 = \text{subspace of } \mathbb{R}^\Omega \text{ consisting of constant vectors.}$

For a given uniform partition $F$:
- $n_F = \text{number of parts of } F$;
- $k_F = \text{size of each part of } F$;
Some definitions for a uniform partition of a finite set

$\Omega$ is the underlying set, of size $M$.

$V_0 = \text{subspace of } \mathbb{R}^\Omega \text{ consisting of constant vectors.}$

For a given uniform partition $F$:

- $n_F = \text{number of parts of } F$;
- $k_F = \text{size of each part of } F$;
- $V_F = \text{subspace of } \mathbb{R}^\Omega \text{ consisting of vectors which are constant on each part of } F$;
Some definitions for a uniform partition of a finite set

Ω is the underlying set, of size $M$.
$V_0 = \text{subspace of } \mathbb{R}^\Omega \text{ consisting of constant vectors.}$

For a given uniform partition $F$:
- $n_F = \text{number of parts of } F$;
- $k_F = \text{size of each part of } F$;
- $V_F = \text{subspace of } \mathbb{R}^\Omega \text{ consisting of vectors which are constant on each part of } F$;
- $V_0 \leq V_F$ and $\text{dim}(V_F) = n_F$;
Some definitions for a uniform partition of a finite set

$\Omega$ is the underlying set, of size $M$.
$V_0 = \text{subspace of } \mathbb{R}^\Omega \text{ consisting of constant vectors.}$

For a given uniform partition $F$:

- $n_F = \text{number of parts of } F$;
- $k_F = \text{size of each part of } F$;
- $V_F = \text{subspace of } \mathbb{R}^\Omega \text{ consisting of vectors which are constant on each part of } F$;
- $V_0 \leq V_F \text{ and } \dim(V_F) = n_F$;
- $X_F$ is the $M \times n_F$ incidence matrix of elements of $\Omega$ in parts of $F$;
Some definitions for a uniform partition of a finite set

\( \Omega \) is the underlying set, of size \( M \).
\[ V_0 = \text{subspace of } \mathbb{R}^\Omega \text{ consisting of constant vectors}. \]

For a given uniform partition \( F \):

- \( n_F = \) number of parts of \( F \);
- \( k_F = \) size of each part of \( F \);
- \( V_F = \) subspace of \( \mathbb{R}^\Omega \) consisting of vectors which are constant on each part of \( F \);
- \( V_0 \leq V_F \) and \( \dim(V_F) = n_F \);
- \( X_F \) is the \( M \times n_F \) incidence matrix of elements of \( \Omega \) in parts of \( F \);
- \( P_F = \frac{1}{k_F} X_F X_F^\top \) = matrix of orthogonal projection onto \( V_F \), which averages each vector over each part of \( F \).
Some definitions for two uniform partitions of the same set

\[ N_{FG} = X_F^T X_G \]
\[ = \text{incidence matrix between parts of } F \text{ and parts of } G. \]
Some definitions for two uniform partitions of the same set

\[ N_{FG} = X_F^T X_G \]

= incidence matrix between parts of \( F \) and parts of \( G \).

**Refinement** \( F \prec G \) means that each part of \( F \) is contained in a single part of \( G \) but \( n_F > n_G \).
Some definitions for two uniform partitions of the same set

\[ N_{FG} = X_F^T X_G \]

\[ = \text{incidence matrix between parts of } F \text{ and parts of } G. \]

**Refinement** $F \prec G$ means that each part of $F$ is contained in a single part of $G$ but $n_F > n_G$.

**Orthogonality** $F \perp G$ means the following equivalent things:

- $N_{FG} = \text{constant} \times J$;
- $P_F P_G = P_G P_F = P_0 = \text{projector onto } V_0$;
- $(V_F \cap V_0^\perp) \perp (V_G \cap V_0^\perp)$;
- $X_F^T (I - P_0) X_G = 0$;
- $N_{F0} N_{0G} = k_0 N_{FG} = MN_{FG}$. 

**Balance** If no entry in $N_{FG}$ is bigger than 1 then $F \triangle G$ means the following equivalent things:

- $N_{FG} N_{GF}$ is completely symmetric (a linear combination of $I$ and $J$) but not scalar;
- $X_F^T (I - P_G) X_F$ is completely symmetric but not zero.

(We usually exclude orthogonality.)
Some definitions for two uniform partitions of the same set

\[ N_{FG} = X_F^T X_G \]

= incidence matrix between parts of \( F \) and parts of \( G \).

**Refinement** \( F \prec G \) means that each part of \( F \) is contained in a single part of \( G \) but \( n_F > n_G \).

**Orthogonality** \( F \perp G \) means the following equivalent things:

- \( N_{FG} = \text{constant} \times J \);
- \( P_F P_G = P_G P_F = P_0 = \text{projector onto } V_0 \);
- \( (V_F \cap V_0^\perp) \perp (V_G \cap V_0^\perp) \);
- \( X_F^T (I - P_0) X_G = 0 \);
- \( N_{F0} N_{0G} = k_0 N_{FG} = MN_{FG} \).

**Balance** If no entry in \( N_{FG} \) is bigger than 1 then \( F \triangleright G \) means the following equivalent things:

- \( N_{FG} N_{GF} \) is completely symmetric (a linear combination of \( I \) and \( J \) but not scalar);
- \( X_F^T (I - P_G) X_F \) is completely symmetric but not zero. (We usually exclude orthogonality.)
So you can have fun making sets of partitions on the same set such that each pair is related by refinement or orthogonality or balance.
Ternary relations?

So you can have fun making sets of partitions on the same set such that each pair is related by refinement or orthogonality or balance.

But hang on! What happens to orthogonality or balance when we project orthogonally away from any partition subspace?
Ternary relations?

So you can have fun making sets of partitions on the same set such that each pair is related by refinement or orthogonality or balance.

But hang on! What happens to orthogonality or balance when we project orthogonally away from any partition subspace?

**Adjusted orthogonality** Partitions $F$ and $G$ have adjusted orthogonality with respect to partition $L$ if

$$X_F^\top (I - P_L)X_G = 0;$$

equivalently,

$$N_{FL}N_{LG} = k_L N_{FG}.$$
If $\mathcal{L}$ is a set of partitions of $\Omega$, put

$$P_\mathcal{L} = \text{matrix of orthogonal projection onto } \sum_{L \in \mathcal{L}} V_L.$$
If $\mathcal{L}$ is a set of partitions of $\Omega$, put

$$P_{\mathcal{L}} = \text{matrix of orthogonal projection onto } \sum_{L \in \mathcal{L}} V_L.$$ 

**Adjusted orthogonality** Partitions $F$ and $G$ have adjusted orthogonality with respect to the set $\mathcal{L}$ of partitions if

$$X_F^\top (I - P_{\mathcal{L}}) X_G = 0.$$
An $r \times c$ triple array is an $r \times c$ rectangle, each cell containing one of $r + c - 1$ letters, such that

- rows $R$ are strictly orthogonal to columns $C$, with all intersections of size 1;
- rows are balanced with respect to letters ($L$) (every pair of rows has the same number of letters in common);
- columns are balanced with respect to letters;
- rows and columns have adjusted orthogonality with respect to $L$ (the set of letters in each row has constant size of intersection with the set of letters in each column).
How did I make it? Start with a SBIBD

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
How did I make it? Start with a SBIBD

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>2</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>column name is in</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>I</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>J</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>row name is not in</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>D</td>
<td>E</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>G</td>
<td>I</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td>F</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>D</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How did I make it? Start with a SBIBD

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>row name is not in</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>column name is in</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>J</td>
</tr>
</tbody>
</table>

Put the letters in cells and obtain these subsets in rows and columns.
How did I make it? Start with a SBIBD

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>2</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BDF</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>A</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>H</td>
<td>I</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>J</td>
<td>J</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>I</td>
</tr>
</tbody>
</table>

A | B | D | E | F | J  
B | D | E | G | H | I  
C | A | B | C | G | I | J  
C | E | F | H | I | J  
A | C | D | F | F | H  

Row name is not in

Put the letters in cells and obtain these subsets in rows and columns
Problem: can you do it?

Given a subset of letters allowed for each cell, is it possible to choose an array of distinct representatives, one per cell, so that no letter is repeated in a row or column?
Problem: can you do it?

Given a subset of letters allowed for each cell, is it possible to choose an array of distinct representatives, one per cell, so that no letter is repeated in a row or column?

Fon-der-Flaass, 1997: the general problem is NP-complete.
Problem: can you do it?

Given a subset of letters allowed for each cell, is it possible to choose an array of distinct representatives, one per cell, so that no letter is repeated in a row or column?

Fon-der-Flaass, 1997: the general problem is NP-complete.

Suppose the allowable subsets come from an SBIBD in the way I showed?
Given a subset of letters allowed for each cell, is it possible to choose an array of distinct representatives, one per cell, so that no letter is repeated in a row or column?

Fon-der-Flaass, 1997: the general problem is NP-complete.

Suppose the allowable subsets come from an SBIBD in the way I showed?

- Not if the allowable subsets have size ≤ 2.
Problem: can you do it?

Given a subset of letters allowed for each cell, is it possible to choose an array of distinct representatives, one per cell, so that no letter is repeated in a row or column?

Fon-der-Flaass, 1997: the general problem is NP-complete.

Suppose the allowable subsets come from an SBIBD in the way I showed?

- Not if the allowable subsets have size $\leq 2$.
- Agrawal (1966): “always possible in the examples tried by the author”. 
Problem: can you do it?

Given a subset of letters allowed for each cell, is it possible to choose an array of distinct representatives, one per cell, so that no letter is repeated in a row or column?

Fon-der-Flaass, 1997: the general problem is NP-complete.

Suppose the allowable subsets come from an SBIBD in the way I showed?

- Not if the allowable subsets have size $\leq 2$.
- Agrawal (1966): “always possible in the examples tried by the author”.
Problem: can you do it?

Given a subset of letters allowed for each cell, is it possible to choose an array of distinct representatives, one per cell, so that no letter is repeated in a row or column?

Fon-der-Flaass, 1997: the general problem is NP-complete.

Suppose the allowable subsets come from an SBIBD in the way I showed?

- Not if the allowable subsets have size \( \leq 2 \).
- Agrawal (1966): “always possible in the examples tried by the author”.
- Seberry (1979); Street (1981); Bagchi (1996); Preece, Wallis and Yucas (2005) gave explicit constructions for \( q \times (q + 1) \) when \( q \) is an odd prime power and \( q > 3 \).
Problem: can you do it?

Given a subset of letters allowed for each cell, is it possible to choose an array of distinct representatives, one per cell, so that no letter is repeated in a row or column?

Fon-der-Flaass, 1997: the general problem is NP-complete.

Suppose the allowable subsets come from an SBIBD in the way I showed?

- Not if the allowable subsets have size \( \leq 2 \).
- Agrawal (1966): “always possible in the examples tried by the author”.
- Seberry (1979); Street (1981); Bagchi (1996); Preece, Wallis and Yucas (2005) gave explicit constructions for \( q \times (q + 1) \) when \( q \) is an odd prime power and \( q > 3 \).
- Computer search always gives a positive result quickly.
Problem: can you do it?

Given a subset of letters allowed for each cell, is it possible to choose an array of distinct representatives, one per cell, so that no letter is repeated in a row or column?

Fon-der-Flaass, 1997: the general problem is NP-complete.

Suppose the allowable subsets come from an SBIBD in the way I showed?

- Not if the allowable subsets have size $\leq 2$.
- Agrawal (1966): “always possible in the examples tried by the author”.
- Seberry (1979); Street (1981); Bagchi (1996); Preece, Wallis and Yucas (2005) gave explicit constructions for $q \times (q + 1)$ when $q$ is an odd prime power and $q > 3$.
- Computer search always gives a positive result quickly.
Problem: can you do it?

Given a subset of letters allowed for each cell, is it possible to choose an array of distinct representatives, one per cell, so that no letter is repeated in a row or column?

Fon-der-Flaass, 1997: the general problem is NP-complete.

Suppose the allowable subsets come from an SBIBD in the way I showed?

- Not if the allowable subsets have size $\leq 2$.
- Agrawal (1966): “always possible in the examples tried by the author”.
- Seberry (1979); Street (1981); Bagchi (1996); Preece, Wallis and Yucas (2005) gave explicit constructions for $q \times (q + 1)$ when $q$ is an odd prime power and $q > 3$.
- Computer search always gives a positive result quickly.

Your task: Proof or counter-example.
Balance among three or more uniform partitions

\[ P_F = \text{matrix of orthogonal projection onto } V_F \]
\[ P_0 = \text{matrix of orthogonal projection onto } V_0 \]

Put \( Q_F = P_F - P_0 \).
Balance among three or more uniform partitions

\[ P_F = \text{matrix of orthogonal projection onto } V_F \]
\[ P_0 = \text{matrix of orthogonal projection onto } V_0 \]

Put \( Q_F = P_F - P_0 \).

\( F \) is balanced with respect to \( G \) means
(in addition to banning orthogonality)
\( N_{FG}N_{GF} \) is completely symmetric but not scalar; equivalently
\( X_F^T(I - P_G)X_F \) is completely symmetric but not zero; equivalently, \( Q_FQ_GQ_F \) is a non-zero scalar multiple of \( Q_F \).
Balance among three or more uniform partitions

\[ P_F = \text{matrix of orthogonal projection onto } V_F \]
\[ P_0 = \text{matrix of orthogonal projection onto } V_0 \]

Put \( Q_F = P_F - P_0 \).

\( F \) is balanced with respect to \( G \) means (in addition to banning orthogonality)
\( N_{FG}N_{GF} \) is completely symmetric but not scalar; equivalently
\( X_F^\top (I - P_G)X_F \) is completely symmetric but not zero; equivalently, \( Q_FQ_GQ_F \) is a non-zero scalar multiple of \( Q_F \).

If \( G \) is a set of partitions of \( \Omega \),

\[ P_G = \text{matrix of orthogonal projection onto } \sum_{G \in G} V_G \].
Balance among three or more uniform partitions

\[ P_F = \text{matrix of orthogonal projection onto } V_F \]
\[ P_0 = \text{matrix of orthogonal projection onto } V_0 \]

Put \( Q_F = P_F - P_0. \)

\( F \) is balanced with respect to \( G \) means (in addition to banning orthogonality)
\( N_{FG}N_{GF} \) is completely symmetric but not scalar; equivalently
\( X_F^\top (I - P_G)X_F \) is completely symmetric but not zero; equivalently, \( Q_FQ_GQ_F \) is a non-zero scalar multiple of \( Q_F. \)

If \( \mathcal{G} \) is a set of partitions of \( \Omega, \)
\[ P_{\mathcal{G}} = \text{matrix of orthogonal projection onto } \sum_{G \in \mathcal{G}} V_G. \]

\( F \) is \textbf{balanced with respect to} \( \mathcal{G} \) if
\[ X_F^\top (I - P_{\mathcal{G}})X_F \] is completely symmetric but not zero.
Suppose that partitions $F$, $G$ and $H$ each have $n$ parts of size $k$, and that each pair are balanced (both ways).
Suppose that partitions $F$, $G$ and $H$ each have $n$ parts of size $k$, and that each pair are balanced (both ways).

Then $F$ is balanced with respect to $\{G,H\}$ if and only if

$$N_{FG}N_{GH}N_{HF} + N_{FH}N_{HG}N_{GF}$$

is completely symmetric.

Equivalently,

$$Q_F(Q_G Q_H + Q_H Q_G) Q_F$$

is a non-zero multiple of $Q_F$. 
Suppose that partitions $F$, $G$ and $H$ each have $n$ parts of size $k$, and that each pair are balanced (both ways).

Then $F$ is balanced with respect to $\{G, H\}$ if and only if

$$N_{FG}N_{GH}N_{HF} + N_{FH}N_{HG}N_{GF} \text{ is completely symmetric.}$$

Equivalently,

$$Q_F(Q_GQ_H + Q_HQ_G)Q_F \text{ is a non-zero multiple of } Q_F.$$ 

The above is implied by this stronger condition:

$$N_{FG}N_{GH} \text{ is a linear combination of } N_{FH} \text{ and } J.$$
A set $\mathcal{L}$ of uniform partitions of $\Omega$, all with $n$ parts, has **universal balance** if whenever $F \in \mathcal{L}$ and $G \subseteq \mathcal{L} \setminus \{F\}$ then $F$ is balanced with respect to $G$. 

Equivalently (I hope), whenever $F$ and $G$ are as above, then 

$$Q_F \left( \sum_{\sigma \in \text{Sym}(r)} \sigma Q_G(1) \sigma(2) \cdots \sigma(r) \right) Q_F$$

is a non-zero multiple of $Q_F$, where $r = |G|$. 

Equivalently, 

$$\sum_{\sigma} N_{FG} \sigma(1) N_{G} \sigma(1) \cdots N_{G} \sigma(r) F$$

is . . .
My attempt at a general definition

A set $\mathcal{L}$ of uniform partitions of $\Omega$, all with $n$ parts, has **universal balance** if whenever $F \in \mathcal{L}$ and $\mathcal{G} \subseteq \mathcal{L} \setminus \{F\}$ then $F$ is balanced with respect to $\mathcal{G}$.

Equivalently (I hope), whenever $F$ and $\mathcal{G}$ are as above, then

$$Q_F \left( \sum_{\sigma \in \text{Sym}(r)} Q_{G_{\sigma(1)}} Q_{G_{\sigma(2)}} \cdots Q_{G_{\sigma(r)}} \right) Q_F$$

is a non-zero multiple of $Q_F$, where $r = |\mathcal{G}|$. 


A set $\mathcal{L}$ of uniform partitions of $\Omega$, all with $n$ parts, has **universal balance** if whenever $F \in \mathcal{L}$ and $G \subseteq \mathcal{L}\setminus \{F\}$ then $F$ is balanced with respect to $G$.

Equivalently (I hope), whenever $F$ and $G$ are as above, then

$$Q_F \left( \sum_{\sigma \in \text{Sym}(r)} Q_{G_{\sigma(1)}} Q_{G_{\sigma(2)}} \cdots Q_{G_{\sigma(r)}} \right) Q_F$$

is a non-zero multiple of $Q_F$, where $r = |G|$.

Equivalently, $\sum_{\sigma} N_{FG_{\sigma(1)}} N_{G_{\sigma(1)}G_{\sigma(2)}} \cdots N_{G_{\sigma(r)}F}$ is ...
Known families, for $n$ parts of size $k$

\[ N_{FG}N_{GH}N_{HF} + N_{FH}N_{HG}N_{GF} \] is completely symmetric, or its generalization.
Known families, for $n$ parts of size $k$

$$N_{FG}N_{GH}N_{HF} + N_{FH}N_{HG}N_{GF}$$ is completely symmetric, or its generalization.

- $k = n - 1$: remove a common transversal from a set of mutually orthogonal $n \times n$ Latin squares, so that every $N$ is $J - I$. 

$n \equiv 3 \pmod{4}$ and $k = (n + 1)/2$ or $k = (n - 1)/2$: if there is a doubly-regular tournament of size $n$, its adjacency matrix $A$ satisfies $I + A + A^\top = J$ and $A^2 \in \langle I, A, J \rangle$, then ensure that each $N$ is either $I + A$ or $I + A^\top$ (or $A$ or $A^\top$).

$n = 2^2 m$ and $k = 2^2 m - 1 + 2^m - 1$ or $k = 2^2 m - 1 - 2^m - 1$: Cameron has constructions from quadratic forms, and the strong form of the condition is satisfied. (For $n = 16$ and $k = 6$ this involves compatible Clebsch graphs which form an amorphic association scheme.)
Known families, for $n$ parts of size $k$

$$N_{FG}N_{GH}N_{HF} + N_{FH}N_{HG}N_{GF}$$ is completely symmetric, or its generalization.

- $k = n - 1$: remove a common transversal from a set of mutually orthogonal $n \times n$ Latin squares, so that every $N$ is $J - I$.
- $n \equiv 3 \pmod{4}$ and $k = (n + 1)/2$ or $k = (n - 1)/2$: if there is a doubly-regular tournament of size $n$, its adjacency matrix $A$ satisfies $I + A + A^\top = J$ and $A^2 \in \langle I, A, J \rangle$, then ensure that each $N$ is either $I + A$ or $I + A^\top$ (or $A$ or $A^\top$).

$n = 2^2 m$ and $k = 2^2 m - 1 + 2^m - 1$ or $k = 2^2 m - 1 - 2^m - 1$:

Cameron has constructions from quadratic forms, and the strong form of the condition is satisfied. (For $n = 16$ and $k = 6$ this involves compatible Clebsch graphs which form an amorphic association scheme.)
Known families, for \( n \) parts of size \( k \)

\[
N_{FG}N_{GH}N_{HF} + N_{FH}N_{HG}N_{GF}
\]
is completely symmetric, or its generalization.

- \( k = n - 1 \): remove a common transversal from a set of mutually orthogonal \( n \times n \) Latin squares, so that every \( N \) is \( J - I \).
- \( n \equiv 3 \pmod{4} \) and \( k = (n + 1)/2 \) or \( k = (n - 1)/2 \): if there is a doubly-regular tournament of size \( n \), its adjacency matrix \( A \) satisfies \( I + A + A^\top = J \) and \( A^2 \in \langle I, A, J \rangle \), then ensure that each \( N \) is either \( I + A \) or \( I + A^\top \) (or \( A \) or \( A^\top \)).
- \( n = 2^m \) and \( k = 2^{m-1} + 2^{m-1} \) or \( k = 2^{m-1} - 2^{m-1} \): Cameron has constructions from quadratic forms, and the strong form of the condition is satisfied. (For \( n = 16 \) and \( k = 6 \) this involves compatible Clebsch graphs which form an amorphic association scheme.)
Problem: is this all?

Your task

- Find all possible sets of three or more incidence matrices $N_{FG}$ satisfying the conditions.
Problem: is this all?

Your task

- Find all possible sets of three or more incidence matrices $N_{FG}$ satisfying the conditions.
- For each such set, realise them as incidence matrices of a set of partitions.

Or three or more?
Problem: is this all?

Your task

- Find all possible sets of three or more incidence matrices $N_{FG}$ satisfying the conditions.
- For each such set, realise them as incidence matrices of a set of partitions.
- For each such realisation, find another partition with $k$ parts of size $n$ that is orthogonal to all the rest (surprisingly, this often makes the previous part easier).
Problem: is this all?

Your task

- Find all possible sets of three or more incidence matrices $N_{FG}$ satisfying the conditions.
- For each such set, realise them as incidence matrices of a set of partitions.
- For each such realisation, find another partition with $k$ parts of size $n$ that is orthogonal to all the rest (surprisingly, this often makes the previous part easier).
- What about two such sets, one with $n$ parts of size $k$, the other with $k$ parts of size $n$, and every partition in one set orthogonal to every partition in the other set? (If each set has two partitions, this is a double Youden rectangle, so I only require one of the sets to have at least three partitions.)
Your task

- Find all possible sets of three or more incidence matrices $N_{FG}$ satisfying the conditions.
- For each such set, realise them as incidence matrices of a set of partitions.
- For each such realisation, find another partition with $k$ parts of size $n$ that is orthogonal to all the rest (surprisingly, this often makes the previous part easier).
- What about two such sets, one with $n$ parts of size $k$, the other with $k$ parts of size $n$, and every partition in one set orthogonal to every partition in the other set? (If each set has two partitions, this is a double Youden rectangle, so I only require one of the sets to have at least three partitions.)
- Or three or more?